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1. Introduction

Visual programming languages (VPLs) are becoming increasingly common in several domains.  For example,
visual programming languages or sublanguages are becoming the most common way to do some kinds of GUI
programming, are becoming the most common way of specifying visualization graphics depicting scientific data,
and are also starting to appear as macro generators for end-user applications.  However, despite the increase in the
use of VPLs for these and other programming tasks, there has been almost no attention to software engineering
support mechanisms when working in these languages.

Visual programming is programming in which more than one dimension is used to convey semantics [3].
Examples of such additional dimensions are the use of multidimensional objects, the use of spatial relationships, or
the use of the time dimension to specify “before-after” semantic relationships.  Each such potentially significant
object or relationship is a token (just as in traditional textual programming languages each word is a token) and the
collection of one or more such tokens is a visual expression.  Examples of visual expressions used in visual
programming include diagrams, free-hand sketches, icons, or demonstrations of actions performed by graphical
objects.  When a programming language’s (semantically significant) syntax includes visual expressions, the
programming language is a visual programming language.

VPLs often include text in a multidimensional way.  Traditional textual programming languages sometimes also
incorporate a little two-dimensional syntax for text, but only in very limited forms.1  Thus, multidimensionality is
the essential difference between VPLs and strictly textual languages.

This point—that the difference between programming languages that are VPLs and those that are not comes
down simply to multidimensionality—seems to predict that software engineering methodologies and devices
developed for software written in non-visual programming languages should serve for software written in VPLs as
well.  However, multidimensionality has led VPLs researchers into new programming frontiers, and there have so
far been only the beginnings of accompanying software engineering research into these frontiers. This article
surveys several such beginnings using as an example VPL the research visual spreadsheet language Forms/3 [5].

We begin with a discussion of software engineering issues particular to VPLs, and then survey how these issues
affect the following subareas of software engineering for VPLs: supporting program comprehension in visual
programs, testing visual programs, debugging visual programs, and reusing visual code.

                                                            
1 For example, in traditional languages the x-dimension connects a linear string in the language, but the y-dimension may

allow optional line spacing as a documentation device or for limited semantics (such as “continued from previous line”).  Here
only one of these dimensions truly conveys semantics, and the second dimension has been limited to a teletype notion of spatial
relationships so as to be expressible in a one-dimensional string grammar.
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2. Software engineering issues particular to VPLs

Three features alluded to above have particular implications to software engineering in VPLs.  The first is
diversity of audience: while some users of VPLs are professional programmers, some are end users with no training
in professional software engineering notions and methods.

The second is how to develop software engineering approaches that are fully compatible with the non-traditional
paradigms and mechanisms used in VPLs.  For example, specifying program semantics by directly manipulating
objects or demonstrating with concrete examples is not the way programming is done in traditional languages, and
there is as yet little research into suitable software engineering support mechanisms for these non-traditional
language features.

The third is more an opportunity than a problem: many of the language features made possible by
multidimensionality and pioneered in VPLs have inherent elements of software engineering support.  The most
common of these features are concreteness, directness, explicitness, and immediate visual feedback.

Concreteness means expressing some aspect of a program using particular instances, such as specifying some
aspect of semantics by specifying desired behavior using a specific object or value.  A software engineering
implication of concreteness is that, because testing is also done in terms of concrete values, concreteness during
program development automatically performs incremental testing on at least one test value.

Directness in the context of direct manipulation is usually described as “the feeling that one is directly
manipulating the object” [18].  From a cognitive perspective, directness in computing means a small distance
between a goal and the actions required to achieve the goal [7, 8, 10].  In VPLs, both of these definitions are
relevant.  As Green and Petre point out in their distillation of psychology-of-programming literature for VPL
designers, since “programming requires mapping between a problem world and a program world, the closer the
programming world is to the problem world, the easier the problem solving out to be” [7].  An example of directness
in a VPL would be manipulating an object to specify its change in location—that is, using movement to specify
movement, rather than using functions on numbers (x and y screen coordinates) to specify it.

Some aspect of semantics is explicit in the environment if it is directly stated (textually or visually), without the
requirement that the programmer infer it.  An example of explicitness in a VPL would be explicit depiction of
dataflow relationships via edges among related program objects. Such drawings are common software engineering
support devices for traditional languages, but only as separate tools that must be invoked in some step separated
from the editing or debugging process.  In VPLs, such drawings can be part of the language syntax or an automatic
side effect maintained by the environment.

In the context of visual programming, immediate visual feedback refers to automatic display of effects of
program edits.  Tanimoto has coined the term liveness, which categorizes the immediacy of semantic feedback that
is automatically provided during the process of editing a program [21]. An example of a high degree of liveness is
the automatic recalculation feature of spreadsheets.  This feature provides some of the functionality of traditional
debuggers, but is much more incremental.

Given VPLs’ unique features, the challenge is to develop software engineering approaches that are compatible
with these features and take advantage of the opportunities they offer, yet have the power and rigor of traditional
approaches.

3. Dynamic documentation and program comprehension

Program comprehension is critical in the debugging and maintenance phases of the software lifecycle.   The
combination of concrete values with visual feedback leads naturally to the idea of software animation, and many
VPLs include various forms of this.  Software animation can be thought of as a dynamically computed
documentation mechanism for supporting program comprehension.  However, a difference between software
animation and separately prepared documentation is that, since the documentation-oriented code is tied to the logic-
oriented code, software animations do not become out of date as the source code evolves.

Several empirical studies have been done on VPLs’ effects on program comprehension.  See Whitley [24] for a
survey of this work.  The results of these studies have been mixed, reporting findings for some kinds of programs or
audiences in which VPLs and/or visual notations are linked with greater comprehension, and others in which strictly
textual languages and/or notations have been linked with greater comprehension.  Unfortunately, almost all of these
studies have investigated only static diagrammatic notations, omitting the dynamic graphics, concreteness, and
feedback mechanisms found in many VPLs.  However, the use of dynamic graphics of concrete values as a program
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comprehension mechanism was specifically investigated in two studies regarding software animation’s effects on
people’s ability to comprehend and work with previously existing programs [9, 20].  The results were that
animations helped the participants with program comprehension if the participants were actively involved in
working with the animations.

The type of animation investigated in these two studies was graphical animation of textual programs, but, as
pointed out above, VPLs often include similar capabilities simply as by-products.  In Forms/3, animation follows
naturally from the combination of support for graphical types, evolving data values, and incremental visual feedback
as computations evolve and program edits are made [5]. For example, to provide animated documentation of a
selection sort, a programmer may wish to emphasize the “move” portion of the algorithm, having each element glide
down the screen to its new location. To specify such an animation, the programmer gives formulas for the
intermediate positions through which a graphical depiction of an element should travel, either by specifying
straight/clockwise/counter-clockwise and the start, end, and number of steps, or by directly drawing the path (middle
of Figure 1). When the user provides formulas in this form to create an animation of one element of a matrix being
sorted, the system automatically generalizes it for the remaining elements of the matrix [6]. After this generalization
of Figure 1, the result is as shown in Figure 2. For animation effects other than spatial movement, the programmer
can select options on the animation form to specify paths through “visibility space” (for fade-in/fade-out sequences),
through “color space” (for gradual color transitions), or through “intensity space” (for brightening/dimming
transitions).
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Fig. 1. An Animation form for one element of the selection sort animation. The parameters are established in cell formulas at the
top and middle (through a flexible combination of text and/or drawing), and the result is at the bottom.  Automatic generalization
of the formula that references this form causes, on a lazy basis, a copy of this form to be created to animate whichever element is

actively being sorted.
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Fig. 2. A sort animation shows the elements of the unsorted group at the top being moved one at a time to the sorted group at the
bottom. The final element is moving from the top left corner to the bottom right at this point in the animation.

4. Testing

The high degrees of concreteness and immediate visual feedback present in some VPLs have been motivated in
part by a kind of “instant testing” goal, with the idea that if the user immediately sees the result of a program edit, he
or she will spot programming bugs as quickly as they are made, and hence will be able to eradicate them right away.
This motivation has been especially prevalent in end-user VPLs, but is also found in VPLs for professional
programmers.

However, spreadsheet systems provide evidence that concreteness and immediate visual feedback have not been
enough for finding and removing most of the bugs in a spreadsheet’s formulas: there is a substantial body of
research showing that spreadsheets often contain bugs. For example, field audits of real-world spreadsheets have
found that 20-40% of these contain bugs, and that between 1% and 4% of all cells contain bugs [22].  Also, in an
early empirical study of experienced spreadsheet users, 44% of the spreadsheets created by those users were found
to contain user-generated bugs [2]. Results of several later studies have been similar: between 10% and 90% of the
spreadsheets examined have been found to contain bugs.  (See Panko and Halverson [11] for a survey of these
studies).  Compounding this problem, creators of programs in language environments featuring immediate visual
feedback, such as in spreadsheet systems, seem to express unwarranted confidence in the reliability of their
programs [25].

There is recent work in Forms/3 to bring some of the benefits of applying formalized notions of testing to the
informal, incremental, development world of spreadsheet-like VPLs, including a range of research languages in this
paradigm as well as standard commercial spreadsheet packages [4, 15, 16].  The “What You See Is What You Test”
(WYSIWYT) methodology is an approach to testing for highly visual problem-solving environments such as
spreadsheets.  The methodology is completely visual, and is designed to support end users as well as more
sophisticated programmers.

In software engineering research, a definition of what it means for a program to be tested enough  is called a test
adequacy criterion.  Under the WYSIWYT approach, the VPL’s designer chooses a test adequacy criterion, such as
that each pairing of subexpression relationships must be exercised by at least one test.  Using the test adequacy
criterion to define the ideal, the system continuously communicates to users how closely they have gotten, through
their testing activities, to this ideal.  To do this, the system treats each user “decision” about correctness as a test, and
the user communicates those decisions to the system by checking off a value whenever he or she notices that it is
correct.  The system tracks these tests and their implications, and also keeps track of what previous tests need to be
redone as a result of formula edits.  This approach provides feedback about testing adequacy at all stages of
spreadsheet development, with the intent of helping users detect bugs in their spreadsheets.

The methodology has been prototyped in Forms/3, but to best illustrate how an end user might use it, the
following scenario illustrates instead how the WYSIWYT methodology might appear if integrated into widely used
commercial spreadsheet packages.
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Suppose an end user has a printout of a tax form such as in Figure 3 in front of her, and she wants to use a
spreadsheet to figure out the answers.  To do this, she has created a spreadsheet such as the one in Figure 4.

Although this spreadsheet is simple, there are several ways the user could end up reporting the wrong answer.
Like many taxpayers, she may be struggling to gather up all the required data, and may change her mind about the
right data values to enter.  If she has been taking shortcuts with the formulas, basing them upon the conditions
present in her first version of the data (such as not bothering to use a max operator in line 5 to prevent negatives), the
formulas are probably not very general, and may cause problems if her data changes.  For example, if she entered
“line 4 - line 3” as the formula for line 5, but later changes line 4 to 5500 because her parents tell her they did not
claim her this year after all, then the formula for line 5 will not give the correct answer. Similar problems could arise
if she discovers that she entered data from the wrong box of her W-2, and so on.

Form

1040EZ

Name &
Address

Report
your
income

Attach
Copy B of
Form(s)
W-2 here.
Attach tax
payment on
top of
Form(s) W-2.

Note:  You
must check
Yes or No.

Department of the Treasury - Internal Revenue Service

Income Tax Return for
Single Filers With No Dependents    1991
Use the IRS label (see page 10).  If you don't have one, please print.

          Print your name (first, initial, last)

          Home address (number and street).  (If you have a P.O. box, see page 11).)         Apt. no.

          City, town or post office, state, and ZIP code.  (If you have a foreign address, see page 11.)

Please see instructions on the back.  Also, see the
Form 1040EZ booklet.

Presidential Election Campaign (see page 11)
Do you want $1 to go to this fund?

L
A
B
E 
L

H
E
R
E

Your social security number

1   Total wages, salaries, and tips.  This should be shown in Box 
10 of your W-2 form(s).  (Attach your W-2 form(s).)

2   Taxable interest income of $400 or less.  If the total is more 
than $400, you cannot use Form 1040EZ.

3   Add line 1 and line 2.  This is your adjusted gross income.
4   Can your parents (or someone else) claim you on their return?
             Yes.  Enter amount from line E here.
              No.  Enter 5,550.00.  This is the total of your standard
                       deduction and personal exemption.

5   Subtract line 4 from line 3.  If line 4 is larger than line 3, enter 
0.  This is your taxable income.

Yes  No

Fig. 3. A portion of a tax form.
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1040EZ calculations:

Presidential election? yes
1. Total wages $5,132
2. Taxable interest $297
3. Adjusted gross $5,429
4. Parents? $1,500 Line E $1,500
5. Taxable income $3,929

Fig. 4. The user’s spreadsheet to figure out the taxes.  The first few cells are simply data values.  Line 3’s formula is line 1 + line
2, line 4’s formula is a reference to line E, and line 5’s formula is line 3 - line 4.

Even in this simple case, the WYSIWYT methodology can provide benefits.  Figure 5 shows a mock-up of how
it might be incorporated into a popular spreadsheet package.  All cells containing formulas (as opposed to data
values) are initially red-bordered with checkboxes, as in Figure 5(a).  The first time the user sees a red border, she
moves her mouse over it and the tool tips inform her that “red borders mean untested and blue borders mean tested.
You can check cells off when you approve of their values.”  The user checks off a value that she is sure is correct,
and a checkmark (√) appears in the cell the user checked off, as in Figure 5(b).  Checkmarks are used to show where
the user has explicitly checked off a value.  The wider implications of this checkmark are reflected by border colors.
Thus, the border of this explicitly approved cell and of cells contributing to it become blue.  If she then changed
some data, any affected checkmarks would be replaced with question marks (?).  This would remind her to check
again the cells whose values she thought were important enough to check off before.

Now suppose that, instead of replacing a data value, the user makes the formula change in line 4 alluded to
above, changing the previous formula to the constant 5500 instead of the former reference to line E.  Since the
change she made involved a formula (the one she just changed to a data value), the affected cells’ borders revert to
red and downstream √s and ?s disappear, indicating that these cells are now completely untested again.  See Figure
5(c).  The maintenance of the “testedness” status of each cell throughout the editing process, as illustrated in Figure
5(c), is an important benefit of the approach.  Without this feature, the user may not realize that the testing she did
before became irrelevant with her formula change and now needs to be redone.

A primary goal of this approach is to reduce overconfidence about the correctness of spreadsheet formulas.  In an
empirical study, the methodology significantly reduced overconfidence about how tested spreadsheets were, as well
as improving effectiveness and efficiency of testing [17].
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1040EZ calculations:

Presidential election? yes
1. Total wages $5,132
2. Taxable interest $297

3. Adjusted gross $5,429

4. Parents? $1,500 Line E $1,500

5. Taxable income $3,929

(a)

1040EZ calculations:

Presidential election? yes
1. Total wages $5,132
2. Taxable interest $297

3. Adjusted gross $5,429

4. Parents? $1,500 Line E $1,500

5. Taxable income $3,929√

(b)

1040EZ calculations:

Presidential election? yes
1. Total wages $5,132
2. Taxable interest $297

3. Adjusted gross $5,429

4. Parents? $5,500 Line E $1,500

5. Taxable income - $ 7 1

(c)
Fig. 5. A mock-up of a popular spreadsheet package if enhanced by the WYSIWYT technology.   In this black-and-white shot,

red shows a dark gray and blue shows as lighter gray.
(a): All cells containing formulas are initially red, meaning untested.

(b): Whenever the user makes a decision that some data value is correct, she checks it off.  The checkmark appears in the cell she
explicitly validated. Further, all the borders of cells contributing to that correct value become more tested (closer to pure blue).

This example has such simple formulas, all the cells at this point are pure blue, meaning fully tested.
(c): The user changes the formula in line 4 to a constant. This change causes affected cell in the bottom row to be considered

untested again; hence it is now pure red.

The next year, the user may want to improve the spreadsheet so that she can use it year after year without having
to redesign each formula in the context of the current year’s data values.  For example, she adds the yes/no box from
the tax form’s line 4 to her spreadsheet’s line 4 and uses the if operator in the formula for line 4.  Because of this if,
she will need to try at least two test cases for line 4’s cell to be considered tested: one that exercises the “yes”  case
and one that exercises the “no”  case.  (See Rothermel et al. [15, 16] for descriptions of the coverage criteria
currently in use as well as other possible criteria that can alternatively be employed.)

Because of this, when the user checks off one data value as in Figure 6, the border for lines 4 and 5 turn purple
(50% blue and 50% red).  To figure out how to make the purple cells turn blue, the user selects one of them and hits
a “show details” button.  The system then draws arrows pertaining to the subexpression relationships, with colors
depicting which cases still need to be tested. The arrow from the last subexpression is red, pointing out that the “no”
case still needs to be tried.
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1040EZ calculations:

Presidential election? yes
1. Total wages 5132
2. Taxable interest 297

3. Adjusted gross =C4+C5

4. Parents? yes =IF(B7="yes",F7,5550) Line E 1500

5. Taxable income =C6-C7 √

Fig. 6. Some cells require more than one test value to become completely tested, as this formula view with purple cell borders
and red and blue arrows between subexpressions  shows. The adjusted gross value is blue-bordered, the two below it are purple,

the arrow from F7 is blue, and the arrow from 5550 is red.

5. Debugging

We pointed out earlier that the concreteness and immediate visual feedback features present in a number of VPLs
provide some of the functionality needed for debugging.  However, the prevalence of formula errors in spreadsheets
shows that this functionality, valuable though it is, is not enough to either keep the errors out in the first place, or to
get the errors out once they get in.

In order to begin debugging, a user must first know that something is wrong. The animations (dynamic
documentation) described in Section 3 are one potential way VPLs can use to help the user spot incorrect behavior.
Another possibility is that, during the testing interactions described in Section 4, the user comes across a value that
is not correct.

After the user has detected the presence of an error, debugging is classically said to have three stages: locating
the error, fixing it, and then verifying that the fixed portion is now correct. To provide support for locating the error,
the WYSIWYT methodology has been extended as follows. In addition to marking values correct with a checkmark,
a user can mark a value incorrect by X’ing it out.  The dataflow path contributing to the X’d out value is the portion
of the spreadsheet in which the fault exists, and this is highlighted to the user; see Figure 7. The technique used to
decide which cells to highlight is a set of heuristics based on ideas from research in slicing and dicing [12].

Forms/3 does not explicitly support the fixing stage, other than to follow the VPL common practice of allowing
formulas to be edited incrementally without requiring separate tools for editing, compiling, etc.  However, the verify
stage is the same idea as regression testing, which is supported by the WYSIWYT methodology.  In Forms/3, if a
cell is edited, downstream cell colors, border colors, checkmarks, and question marks are reset, making explicit to
the user which cells need to be re-examined at this point.

Fig. 7. An incorrect value is present in cell key3_out, indicated by an X in the checkbox, placed by the user. The system can
display the sub-slice in which the fault lies (highlighted cells). Each cell’s likelihood of containing the fault is communicated by

the darkness of its background.
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6. Code reuse

Although the idea of reusing code is very appealing, effective reuse has long been acknowledged as a problem.
To help address the difficulties, many advocate a strong management commitment to code reuse, leading to the
treatment of code as an asset to be carefully managed in a well organized repository. However, the advent of the
web may bring a change to this outlook, encouraging informal, loosely organized code repositories. This may be
particularly true for the VPLs that are aimed at end users, whose software creations are not usually managed by
anyone other than themselves.  In fact, some recent commercial end-user VPLs such as AgentSheets [13] and
Stagecast (previously known by the names Cocoa and KidSim) [19] already provide just such repositories.

This discussion of reuse will be confined to the use of an existing code component in place of creating a new
component. In general, a component is any artifact of the software process, but this article concentrates solely on
code components. The term repository will be used to mean a collection of components. To distinguish between
reuse tasks, even if they are performed by the same person, the term producer will mean the programmer who is
building reusable components, and the term consumer will mean the programmer who is interested in using these
components. Finally, packaging tasks are the work traditionally required of producers to prepare a component for
inclusion in a formally controlled code repository, such as conforming to standards, preparing documentation,
providing test suites, etc.

In this kind of environment, it is not realistic to expect the producers of the software (end users) to follow any
sort of rigorous, packaging-for-reuse standards in making their code available for use by others.  Thus, if reuse is to
be supported, more sophisticated support mechanisms must be made available on the consumer side. In other words,
the following, highly useful assumptions that have formed the basis of traditional approaches to supporting code
reuse cannot be assumed here because informal repositories simply do not have them:

• A managing body to enforce standards and oversee the repository.
• A set repository structure such as a hierarchy of component categories or collections.
• Component producers who meticulously provide component packaging to aid the consumer.

Biggerstaff and Richter [1] identify four fundamental reuse problems a successful reusability system must
address: finding components, understanding components, modifying components, and composing components. But
given  a constantly evolving repository with no requirement for classification or packaging by the code producer,
how can a VPL support these needs?

Finding components has been the area best supported by traditional software engineering support mechanisms,
namely query facilities allowing consumers to search by keyword, author, comment contents, etc.  Some VPLs have
employed these mechanisms as well, and in fact have easily taken them a step forward: by depicting their
availability explicitly in the programming environment, a VPL can provide a continual reminder that reuse
opportunities exist.  For example, the environment of Forms/3 automatically provides a display and query facility
for code components available for incorporation and/or specialization into an evolving program [23], as shown in
Figure 8.
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Fig. 8. (Left): Forms/3 has a query facility to help users find potentially useful code components.
(Right): Interrelationships with other components are shown. Arrows leading out of a node give examples of how other

components have used this component.

Having found a possibly reusable component, a consumer’s next step will be to understand enough about its
behavior to determine whether to consider making use of it.  This is an area of opportunity for VPLs, because if a
VPL includes aids to program comprehension, and if the VPL also features tightly integrated encouragement for
reuse, then the two can work together to form a “whole bigger than the sum of its parts.”  For example, in Forms/3,
if the consumer is interested in a sorting component, he or she can search for it using the query facility in Figure 8
and, upon clicking on the animation nodes, can watch the dynamic documentation of the sort described in Section 3.

Modifying and composing components are the ways consumers actually make use of components they have
selected.  A recent study of professional Smalltalk users [14] observed that consumers make extensive use of
previous usage contexts when figuring out how to use unfamiliar components. The right side of Figure 8 shows how
the two-dimensional repository display with explicit depiction of relationships with other components helps to
facilitate finding examples of how to use it. As with the left side of the figure, touching the quiz-stats node brings
into view the executable source code of quiz-stats and its supporting nodes, where the user can watch its execution,
provide different sample values and try again, and modify or copy portions of quiz-stats as needed for their own
purposes. Once a user begins making such changes to incorporate the new component, the testing and debugging
features discussed earlier can support this effort.

This ability to browse, retrieve and experiment with usage contexts seems critical to allowing consumers to
successfully reuse even code that has not been specially packaged by its producers. This ability permits an
alternative to the documentation and standardization procedures traditionally required of producers, which is
important in informal repositories and in cooperative repositories not “owned” by any organization.

7. Conclusion

Three features of VPLs raise challenges and opportunities regarding how to provide appropriate software
engineering support.  The first challenge comes from the fact that non-traditional audiences are often the target users
of these languages, and these users are usually not formally trained in programming or software engineering.  The
second arises because many VPLs include unusual features that do not seem to directly map to previous software
engineering support mechanisms.  Such features include use of concrete objects, demonstrations, non-imperative
paradigms, and multidimensionality to specify program semantics.  At the same time, these features also give rise to
opportunities for highly integrated software engineering support mechanisms. By attending to the significant
differences between traditional languages and VPLs, it may be possible to devise software engineering support
methods that achieve the desirable properties of methods for traditional languages, although they may look very
different from traditional methods.
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